Skip to main content

Advertisement

Log in

Reliability framework for characterizing heat wave and cold spell events

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Extreme weather events such as heat waves and cold spells affect people’s lives. This study develops a probabilistic framework to evaluate heat waves and cold spells. As case studies, average daily temperatures of meteorological stations of the two cities (Tehran and Vancouver) from 1995 to 2016 are used to identify four main indicators including intensity, average intensity, duration, and the rate of the occurrence. In addition, probabilistic spatial analysis of the events is obtained through MODIS’s land surface temperature product. To include possible uncertainties, the predictive probability distributions of the intensity and duration are derived using a Bayesian scheme and Monte Carlo Markov Chain method. The probability distributions of the indicators show that the most extreme temperature (lowest temperature) occurs during the cold spell. Reliability evaluations indicate that both cities are more likely to be affected by the cold spell than the heat wave. Results of this study can be used as a benchmark for heat wave/cold spell characterization. The developed approach can be  applied to characterize other extreme weather events in any location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data are publicly available, related links are included in the manuscript.

References

  • Abbaszadeh P, Moradkhani H, Yan H (2018) Enhancing hydrologic data assimilation by evolutionary particle filter and Markov chain Monte Carlo. Adv Water Resour 111:192–204

    Article  Google Scholar 

  • Ahmadnezhad E, Holakouie Naieni K, Ardalan A, Mahmoodi M, Yunesian M, Naddafi K, Mesdaghinia AR (2013) Excess mortality during heat waves, Tehran Iran: an ecological time-series study. J Res Health Sci 13(1):24–31

    Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res: Atmos, 111(D5).

  • Anderson BG, Bell ML (2009) Weather-related mortality: how heat, cold, and heatwaves affect mortality in the United States. Epidemiology 20:205

    Article  Google Scholar 

  • Barnett AG, Hajat S, Gasparrini A, Rocklöv J (2012) Cold and heat waves in the United States. Environ Res 112:218–224

    Article  Google Scholar 

  • Basu R (2009) High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ Heal 8(1):40

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Article  Google Scholar 

  • Brooks S (1998) Markov chain Monte Carlo method and its application. J Royal Stat Soc: Series D (Stat) 47(1):69–100

    Google Scholar 

  • Change IPCC (2007) Climate change 2007: the physical science basis. Agenda 6(07):333

    Google Scholar 

  • Chattopadhyay A, Nabizadeh E, Hassanzadeh P (2020) Analog forecasting of extreme-causing weather patterns using deep learning. J Adv Model Earth Syst 12(2):e2019MS001958

    Article  Google Scholar 

  • Cho D, Yoo C, Im J, Cha DH (2020) Comparative assessment of various machine learning-based bias correction methods for numerical weather prediction model forecasts of extreme air temperatures in urban areas. Earth Sp Sci 7(4):e2019EA000740

    Google Scholar 

  • Coles S, Pericchi L (2003) Anticipating catastrophes through extreme value modelling. J Roy Stat Soc: Ser C (appl Stat) 52(4):405–416

    Google Scholar 

  • Conti S, Meli P, Minelli G, Solimini R, Toccaceli V, Vichi M, Beltrano C, Perini L (2005) Epidemiologic study of mortality during the summer 2003 heat wave in Italy. Environ Res 98:390–399

    Article  Google Scholar 

  • de’DonatoLeoneNoceDavoliMichelozzi FKMDMP (2013) The impact of the February 2012 cold spell on health in Italy using surveillance data. PloS one 8(4):e61720

    Article  Google Scholar 

  • Der Kiureghian A (2005) First- and second-order reliability methods. In: Nikolaidis E, Ghiocel DM, Singhal S (eds) Engineering design reliability handbook. CRC Press

    Google Scholar 

  • Efron B (1992) Bootstrap methods: another look at the jackknife. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics. Springer, New York, NY, pp 569–593

    Chapter  Google Scholar 

  • Elsner JB, Niu X, Jagger TH (2004) Detecting shifts in hurricane rates using a Markov chain Monte Carlo approach. J Clim 17(13):2652–2666

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta PM, Gleason B, Haylock M, Tank AK, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19(3):193–212

    Article  Google Scholar 

  • Furrer R, Knutti R, Sain SR, Nychka DW, Meehl GA (2007) Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys Res Lett, 34(6).

  • Gaál L, Szolgay J, Kohnová S, Hlavčová K, Viglione A (2010) Inclusion of historical information in flood frequency analysis using a Bayesian MCMC technique: a case study for the power dam Orlík, Czech Republic. Contrib Geophys Geod 40(2):121–147

    Article  Google Scholar 

  • Gaume E, Gaál L, Viglione A, Szolgay J, Kohnová S, Blöschl G (2010) Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. J Hydrol 394(1–2):101–117

    Article  Google Scholar 

  • Goldberg MS, Gasparrini A, Armstrong B, Valois MF (2011) The short-term influence of temperature on daily mortality in the temperate climate of Montreal Canada. Environ Res 111(6):853–860

    Article  Google Scholar 

  • Guirguis K, Gershunov A, Cayan DR, Pierce DW (2017) Heat wave probability in the changing climate of the Southwest US. Clim Dyn 50(9):3853–3864

    Google Scholar 

  • Habibi M, Hourcade B (2005) Atlas of Tehran metropolis. Land and People 1, Geographic Information Center of Tehran Municipality

  • Hastings W (1970) Monte Carlo sampling methods using Marko chains and their applications. Biometrica 57:97–109

    Article  Google Scholar 

  • Hauser M, Gudmundsson L, Orth R, Jézéquel A, Haustein K, Vautard R, Vanoldenborgh GJ, Wilcox L, Seneviratne SI (2017) Methods and model dependency of extreme event attribution: the 2015 European drought. Earth’s Future 5(10):1034–1043

    Article  Google Scholar 

  • Hayhoe K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, Moser SC, Schneider SH, Cahill KN, Cleland EE, Dale L (2004) Emissions pathways, climate change, and impacts on California. Proc Natl Acad Sci USA 101(34):12422–12427

    Article  Google Scholar 

  • Ho HC, Knudby A, Xu Y, Hodul M, Aminipouri M (2016) A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area. Sci Total Environ 544:929–938

    Article  Google Scholar 

  • Ho HC, Knudby A, Walker BB, Henderson SB (2017) Delineation of spatial variability in the temperature–mortality relationship on extremely hot days in greater Vancouver Canada. Environ Health Perspect 125(1):66

    Article  Google Scholar 

  • Isikwue MO, Onoja SB, Naakaa DS (2015) Classical and Bayesian Markov chain Monte Carlo (MCMC) modeling of extreme rainfall (1979–2014) in Makurdi, Nigeria. Inter J Water Resour Environ Eng 7(9):123–131

    Article  Google Scholar 

  • Jackson C, Sen MK, Stoffa PL (2004) An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions. J Clim 17(14):2828–2841

    Article  Google Scholar 

  • Jacques-Dumas V, Ragone F, Borgnat P, Abry P, Bouchet F (2021) Deep learning-based extreme heatwave forecast. arXiv preprint arXiv:2103.09743

  • Jahangir MS, Moghim S (2019) Assessment of the urban heat island in the city of Tehran using reliability methods. Atmos Res 225:144–156

    Article  Google Scholar 

  • Jiang Y, Fu P, Weng Q (2015) Downscaling GOES land surface temperature for assessing heat wave health risks. IEEE Geosci Remote Sens Lett 12(8):1605–1609

    Article  Google Scholar 

  • Karl TR, Knight RW (1997) The 1995 Chicago heat wave: how likely is a recurrence? Bull Am Meteor Soc 78(6):1107–1119

    Article  Google Scholar 

  • Ketabchi H, Jahangir MS (2019) Probabilistic numerical assessment of seawater intrusion overshoot in heterogeneous coastal aquifers. Stoch Env Res Risk Assess 33(11–12):1951–1968

    Article  Google Scholar 

  • Ketabchi H, Jahangir MS (2021) Influence of aquifer heterogeneity on sea level rise-induced seawater intrusion: a probabilistic approach. J Contam Hydrol 236:103753

    Article  Google Scholar 

  • Khaliq MN, Ouarda TBMJ, St-Hilaire A, Gachon P (2007) Bayesian change-point analysis of heat spell occurrences in Montreal Canada. Inter J Climatol 27(6):805–818

    Article  Google Scholar 

  • Khan N, Shahid S, Juneng L, Ahmed K, Ismail T, Nawaz N (2019) Prediction of heat waves in Pakistan using quantile regression forests. Atmos Res 221:1–11

    Article  Google Scholar 

  • Kwiatkowski D, Phillips PC, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J Econom 54(1–3):159–178

    Article  Google Scholar 

  • Lee W, Choi HM, Lee JY, Kim DH, Honda Y, Kim H (2018) Temporal changes in mortality impacts of heat wave and cold spell in Korea and Japan. Environ Int 116:136–146

    Article  Google Scholar 

  • Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Change 137:245–260

    Article  Google Scholar 

  • Lhotka O, Kyselý J, Farda A (2018) Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor Appl Climatol 131(3):1043–1054

    Article  Google Scholar 

  • Mahsuli M, Haukaas T (2013) Computer program for multimodel reliability and optimization analysis. ASCE J Comput Civ Eng 27:87–98

    Article  Google Scholar 

  • McGovern A, Elmore KL, Gagne DJ, Haupt SE, Karstens CD, Lagerquist R, Smith T, Williams JK (2017) Using artificial intelligence to improve real-time decision-making for high-impact weather. Bull Am Meteor Soc 98(10):2073–2090

    Article  Google Scholar 

  • McKechnie AE, Wolf BO (2010) Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol Lett 6(2):253–256

    Article  Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  • Moghim S (2018) Impact of climate change on hydrometeorology in Iran. J Glob Planet Change 170:93–105

    Article  Google Scholar 

  • Montero JC, Mirón IJ, Criado JJ, Linares C, Díaz J (2010) Comparison between two methods of defining heat waves: a retrospective study in Castile-La Mancha (Spain). Sci Total Environ 408(7):1544–1550

    Article  Google Scholar 

  • Moreira EE, Martins DS, Pereira LS (2015) Assessing drought cycles in SPI time series using a Fourier analysis. Nat Hazard 15(3):571–585

    Article  Google Scholar 

  • Nori-Sarma A, Benmarhnia T, Rajiva A, Azhar GS, Gupta P, Pednekar MS, Bell ML (2019) Advancing our understanding of heat wave criteria and associated health impacts to improve heat wave alerts in developing country settings. Int J Environ Res Public Health 16(12):2089

    Article  Google Scholar 

  • Oleson KW, Anderson GB, Jones B, McGinnis SA, Sanderson B (2015) Avoided climate impacts of urban and rural heat and cold waves over the US using large climate model ensembles for RCP8. 5 and RCP4. 5. Clim Change 146(3):1–16

    Google Scholar 

  • Ouzeau G, Soubeyroux J-M, Schneider M, Vautard R (2016) Heat waves analysis over France in present and future climate: application of a new method on the EUROCORDEX ensemble. Clim Serv 4:1–12

    Article  Google Scholar 

  • Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett, 39(20)

  • Perkins-Kirkpatrick SE, Fischer EM, Angélil O, Gibson PB (2017) The influence of internal climate variability on heat wave frequency trends. Environ Res Lett 12(4):044005

    Article  Google Scholar 

  • Pollock DSG (1999) A handbook of time-series analysis, signal processing and dynamics, vol 1. Academic Press, London

    Google Scholar 

  • Qian W, Wu K, Leung JCH (2016) Three-dimensional structure and long-term trend of heat wave events in western Eurasia revealed with an anomaly-based approach. Int J Climatol 36(13):4315–4326

    Article  Google Scholar 

  • Reis DS Jr, Stedinger JR (2005) Bayesian MCMC flood frequency analysis with historical information. J Hydrol 313(1–2):97–116

    Article  Google Scholar 

  • Ruggieri E, Antonellis M (2016) An exact approach to Bayesian sequential change point detection. Comput Stat Data Anal 97:71–86

    Article  Google Scholar 

  • Salvatier J, Wiecki TV, Fonnesbeck, (2016) Probabilistic programming in Python using PyMC3. Peer J Computer Sci 2:55

    Article  Google Scholar 

  • Semenza JC, Rubin CH, Falter KH, Selanikio JD, Flanders WD, Howe HL, Wilhelm JL (1996) Heat-related deaths during the July 1995 heat wave in Chicago. N Engl J Med 335(2):84–90

    Article  Google Scholar 

  • Shabbar A, Bonsal B (2003) An assessment of changes in winter cold and warm spells over Canada. Nat Hazards 29(2):173–188

    Article  Google Scholar 

  • Sherbakov T, Malig B, Guirguis K, Gershunov A, Basu R (2018) Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009. Environ Res 160:83–90

    Article  Google Scholar 

  • Siliverstovs B, Ötsch R, Kemfert C, Jaeger CC, Haas A, Kremers H (2010) Climate change and modelling of extreme temperatures in Switzerland. Stoch Env Res Risk Assess 24(2):311–326

    Article  Google Scholar 

  • Sinharay S, Stern HS (2003) Posterior predictive model checking in hierarchical models. J Sta Plan Inference 111(1–2):209–221

    Article  Google Scholar 

  • Smith RL, Tebaldi C, Nychka D, Mearns LO (2009) Bayesian modeling of uncertainty in ensembles of climate models. J Am Stat Assoc 104(485):97–116

    Article  Google Scholar 

  • Song X, Wang S, Li T, Tian J, Ding G, Wang J, Wang J, Shang K (2018) The impact of heat waves and cold spells on respiratory emergency department visits in Beijing, China. Sci Total Environ 615:1499–1505

    Article  Google Scholar 

  • Statistical center of Iran (2011) Yearbook of Iran, Tehran.

  • Tan J, Zheng Y, Tang X, Guo C, Li L, Song G, Zhen X, Yuan D, Kalkstein AJ, Li F, Chen H (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol 54(1):75–84

    Article  Google Scholar 

  • Tierney L (1994) Markov chains for exploring posterior distributions (with discussion). Ann Statist 22:1701–1762

    Google Scholar 

  • Ul Islam S, Rehman N, Sheikh MM (2009) Future change in the frequency of warm and cold spells over Pakistan simulated by the PRECIS regional climate model. Clim Change 94(1–2):35–45

    Article  Google Scholar 

  • Wan Z, Hook S, Hulley G (2015) MYD11A1 MODIS/aqua land surface temperature/emissivity daily L3 global 1km SIN grid V006. NASA EOSDIS Land Processes DAAC. Accessed 2020-01-10. https://doi.org/10.5067/MODIS/MYD11A1.006s

  • Wolf T, McGregor G (2013) The development of a heat wave vulnerability index for London, United Kingdom. Weather Clim Extremes 1:59–68

    Article  Google Scholar 

  • Xie H, Yao Z, Zhang Y, Xu Y, Xu X, Liu T, Lin H, Lao X, Rutherford S, Huang C (2013) Short-term effects of the 2008 cold spell on mortality in three subtropical cities in Guangdong Province China. Environ Health Perspect 121(2):210–216

    Article  Google Scholar 

  • Zhang Y, Li S, Pan X, Tong S, Jaakkola JJ, Gasparrini A, Guo Y, Wang S (2014) The effects of ambient temperature on cerebrovascular mortality: an epidemiologic study in four climatic zones in China. Environ Health 13(1):24

    Article  Google Scholar 

  • Zhao X, Chu PS (2010) Bayesian changepoint analysis for extreme events (typhoons, heavy rainfall, and heat waves): an RJMCMC approach. J Clim 23(5):1034–1046

    Article  Google Scholar 

  • Zhou MG, Wang LJ, Liu T, Yong HZ, Hua LL, Yuan L et al (2014) health impact of the 2008 cold spell on mortality in subtropical China: the climate and health impact national assessment study (CHINAs). Environ Health 13:60

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Environment and Climate Change Canada and Iran Meteorological Organization (IRIMO) for making datasets publicly available. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanaz Moghim.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghim, S., Jahangir, M.S. Reliability framework for characterizing heat wave and cold spell events. Nat Hazards 112, 1503–1525 (2022). https://doi.org/10.1007/s11069-022-05236-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-022-05236-8

Keywords

Navigation